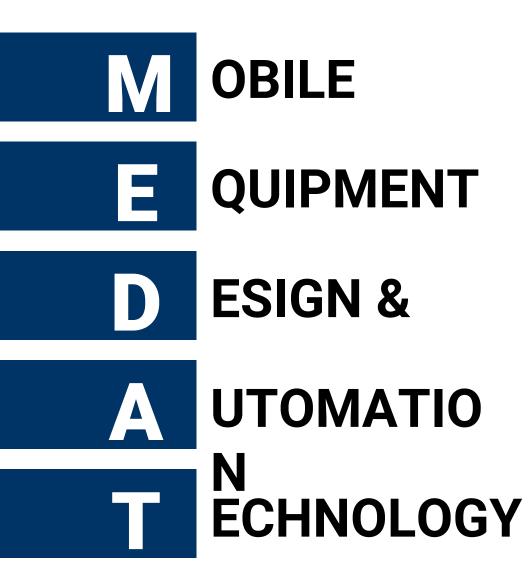
MEDATECH

MEDATech Overview

Capabilities | 2022

Who we are



Innovation is Who We Are

An Innovator First

- Fast to fail
- Faster to
 succeed

MEDATech has been designing and building custom-engineered mobile equipment and systems for customers across the globe since 2003.

Engineering services: from consulting to software development to engineer/design/build

Advanced drilling equipment

All-electric powertrains

Company Profile

MEDATech's core business is mobile equipment design, prototyping & testing services for the construction, mining, transportation & energy sectors. We have offices in Collingwood ON (HQ), Calgary AB and Ocala FL.

Team Experience

We solve a wide range of technical problems involving mechanical, hydraulic, electronic equipment and rechargeable energy systems.

- Our strength Product development
- Our value Quickly making your product vision a reality

Strategic Focus

- Develop long term partners Technology, Manufacturing and Customers
- Highly dependable, innovative solutions
- Focus on safety, economy and productivity
- AGILE methodology: develop prototypes within aggressive timelines

Our Team

Robert Rennie President & Owner

Mark Seeber Senior Technical Advisor

We are 35 people strong. Our management team:

- Engineers, technicians, operators and mechanics
- Years of experience in all facets of machine control

John Arnold General Manager

Our Team

Darren Mueller Sales & Marketing Director

Andrew Severs Engineering Services Director

We are 35 people strong. Our management team:

- Engineers, technicians, operators and mechanics
- Years of experience in all facets of machine control

Paul Cholewa Chief Technology Officer

Scott Dalrymple

Senior Design Engineer & Product Manager for Borterra

Our Clients

Our Partners

On-board chargers and

One of the world's largest providers

of power conversion and power

power electronics

management solutions.

Battery systems

XALT solutions are defined by the remarkable combination of exceptionally high energy and performance density with an extremely compact design, modular structure, and maximum flexibility.

tm4

Electric motors, generators, power electronics and control systems

Suitable for the commercial, automotive, marine, mining, rail, motorsports and recreational vehicle markets.

Charging solutions & robotics

ABB Charging Solutions and ABB Robotics supply ABB Robotics is a pioneer in robotics, machine automation and the full range of fast and ultra-fast EV charging solutions.

Technical Capabilities

ARL

Our Technology

REQUEST

OEM/end user requests a modified or completely new machine design/build

ENGINEER

Complete ground-up engineering work: Mechanical, Hydraulic, Electrical & Software engineering

BUILD

Complete ground-up prototype build

TEST

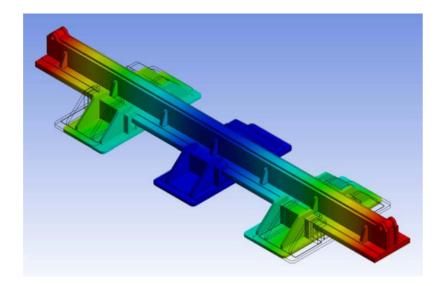
Perform testing & commissioning

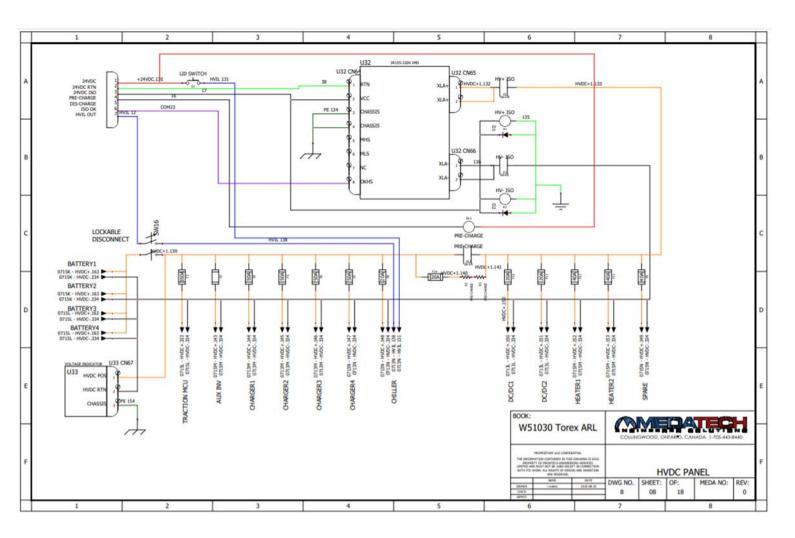
DRAWINGS

Provide as-built drawings, documentation and models

SUPPORT

Provide ongoing engineering support


Mechanical and Electrical Engineering


Mobile engineering: from concept and design to build and testing

- Schematics & panel design: high/low voltage power distribution
- Component selection
- Mechanical / hydraulic engineering
- 3D modelling
- Structural analysis
- Functional safety implementation

Mechanical and Electrical Engineering

Software Development

A key strength

- Local / IoT solutions
- Automatic & virtual testing and validation

Project Management

Seamless project management

- For OEM/supplier design/build project teams
- Testing & validation
- Support for the complete vehicle

Our Technology

MEDATech handles every aspect of EV-powered vehicle design and creation.

- Project Management
- Battery Packaging
- Electrical & Mechanical Engineering
- Human Machine Interface (HMI)
- Vehicle Control (VMU)
- Cab Controls and HVAC
- EV Software
- Telematics
- System Design
- Autonomous System Design

Material Handling & Robotics

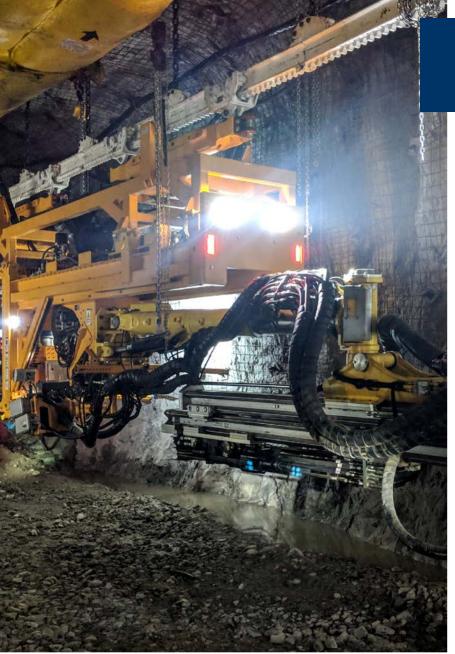
Borterra RodBot[™]

Smart Material Handling Systems

Fully Digital Control Technology

Advanced smart-control systems for any application:

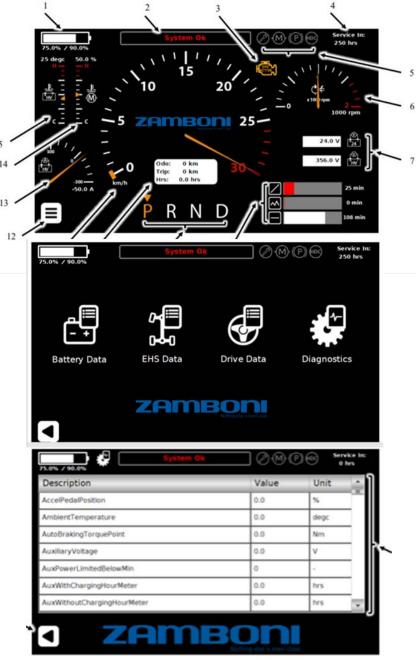
- Design & engineering
- Bench testing & installation
- Support & service



Fully Digital Control Technology

Telematics System Technology

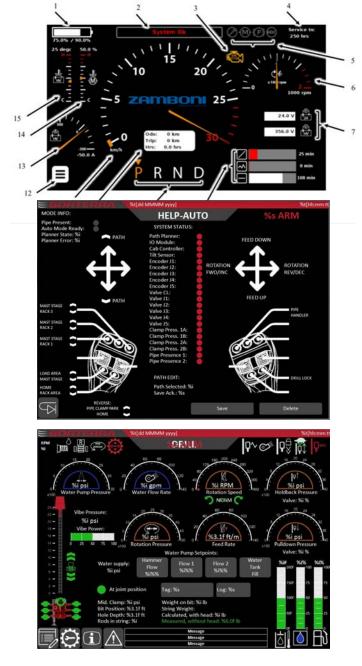
- Fully-engineered telematics systems for any application
- Simple web user interface/dashboard



Full System Design/Build Services

Technical capabilities:

- Full dynamic structural analysis
- Model-based design and simulation (MATLAB[®] / Simulink)
- CAN-based control-system engineering
- Full electrical-system design for high voltage and control systems
- Vehicle dynamic analysis
- Specialty engineering


Our Technology

MEDATech solves:

- Battery-electric drives
- Human-Machine Interface (HMI)
- Vehicle Management Units (VMU)
- Temp Management Systems (TMS)
- Cab controls and HVAC
- Off-board fast charging stations
- Auxiliary hydraulics
- EV software

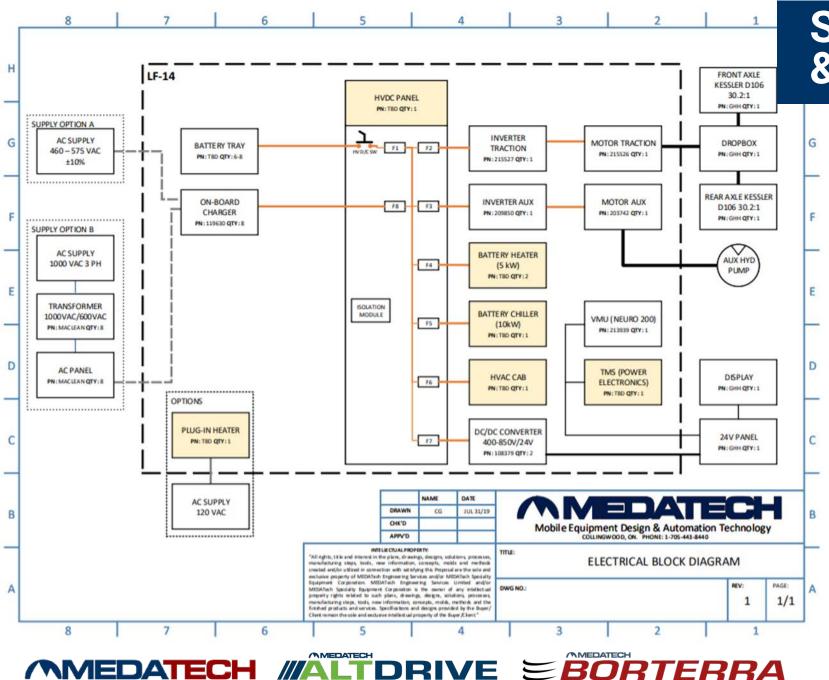
SORTFRRA

Figure 3: Diagnostic Data Screen

Control System Development

Bridging the gap between operator and machine:

- Human-Machine Interface (HMI)
- Electrical control systems
- Test and validation (Electronic testing Lab)



Web-Based Telematics

Delivering cloud-stored data for advanced analytics and modeling:

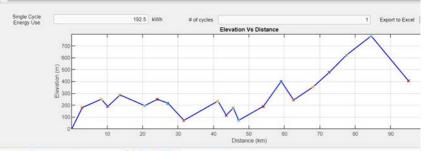
- In-house-designed Graphical User Interface (GUI)
- Drag-and-drop DBC files
- Application-specific data visualization, including charts & plots
- Download tabular data & event logs

System Design & Architecture

From consulting to software development, system architecture & prototyping:

- Requirements & functional specifications
- Architecture & diagramming
- Model-based design and simulation (MATLAB[®]/Simulink)
- CAN-based control system
 engineering
- Functional safety systems & standards
- Electromobility simulations for EV component integration
- Software development

Unloaded


MEDATECH

75 %

DIVE

Xisx File Drive Cycle C:Usersid mueller/Desktop/Simulation Software/HVC drive cycle - Ashcroft to Kelowna xis

Segment	Avg Grade (%)	Distance (km)	Max Speed (km/h)	Mass (kg)	SOC (%)	kWh Remaining	kWh Used/Segment	Elec Power (kW)	Brake Powe
10	-5.1000	2.3500	50	19644	53.8298	166.8725	-3.3364	-70.9880	
11	3.1000	2	100	19644	51.3520	159.1912	7.6813	384.0627	
12	-7	1.5000	50	19644	52.4540	162.6073	-3.4161	-113.8690	
13	1.7000	7	100	19644	45.7373	141.7857	20.8216	297.4513	
14	4 2000	5	100	19644	38.4407	119.1662	22.6195	452.3907	
15	-4.5000	3.5000	50	19644	39.7350	123.1784	-4.0122	-57.3173	
16	2	5.5000	100	19644	34.1346	105.8172	17.3611	315.6572	
17	2.7000	4.6000	100	19644	28.8061	89.2968	16.5184	359.0959	
18	3	4.8900	100	19644	22.8459	70.8223	18.4766	377.8436	
19	2.3000	6.9000	100	19644	15.4142	47.7841	23.0382	333.8866	
20	-3 6000	10 5000	50	10644	17 9001	55,4005	.7 7064	-36 6071	

v600			
70	÷	km/h	
38.5	\$	km/ħ	
70	\$	km/h	
2	\$		
3	:	Ę.	
3	\$		
212	\$	kWb	
80	•	55	
3.73	÷	ratio	
2.2	\$	ratio	
98	\$	96	
1	\$	5	
0.496	\$	m	
65000	٥	kg	
19144	\$	kg	
7	\$	ĸw	1
9	•	m*2	
0.704		ě.	
	70 385 70) 2 33 3 3 212 80 80 373 222 98 1 1 0.498 65000 19144 7 9	70 ⊕ 38.5 ⊕ 70 ⊕ 2 ⊕ 3 ⊕ 373 ⊕ 373 ⊕ 98 ⊕ 1 ⊕ 0.456 ⊕ 65000 ⊕ 19144 ⊕ 7 ⊕ 9 ⊕	373 + ratio 22 + ratio 98 + % 1 + % 0.496 + m 65000 + kg 19144 + kg 7 + KW 9 + m ² 2

EV Simulation

In-house software design:

SORTFRRA

- Validate drive power/energy requirements
- Validate auxiliary power/energy requirements
- Calculate required gear ratios
- Battery and motor efficiencies
- Analyze and compare duty cycles

ment Tab Multi Grade Tab

20.000

30.000

How can we help you?

1(705) 443-8440 sales@medatech.ca